Computational Toxicology of Chloroform: Reverse Dosimetry Using Bayesian Inference, Markov Chain Monte Carlo Simulation, and Human Biomonitoring Data

نویسندگان

  • Michael A. Lyons
  • Raymond S.H. Yang
  • Arthur N. Mayeno
  • Brad Reisfeld
چکیده

BACKGROUND One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. OBJECTIVES We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. METHODS We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. RESULTS Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures < or = 67 microg/L [corrected] in tap water and < or = 0.02 microg/L in ambient household air. CONCLUSIONS Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure-health evaluation-risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpret...

متن کامل

A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...

متن کامل

DEVELOPMENT OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR HUMAN EXPOSURE RISK ASSESSMENT OF METHYLENE DIPHENYL DIISOCYANATE(MDI)

Introduction: Given the lack of a developed physiologically based toxicokinetic (PBTK) model for human systemic exposure assessment of methylene diisocyanate (MDI) and prediction of its urinary metabolites, this study aims to develop a PBTK model for exposure risk assessment of MDI. Methods and Materials: In this study, to assess the potential exposure to the MDI, a PBTK model was constructed ...

متن کامل

New Approaches in 3D Geomechanical Earth Modeling

In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...

متن کامل

Inference about the Burr Type III Distribution under Type-II Hybrid Censored Data

This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2008